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HUMAN-DESIGNED INFORMATION STORED IN DNA 
 
 Supplementary Table S1 and Supplementary Fig. S1 show the amounts of human-
designed information stored in DNA and successfully recovered in this letter 16 previous 
studies.  Supplementary Fig. S2 illustrates some of the information encoded in this study.  
The Shannon information content10 of the designed messages was approximated by the 
minimum number of bits required to encode the message using any of the following methods: 
 

• compress ASCII file containing the message in natural form, using Unix command  
gzip --best 

• compress ASCII file containing the message in natural form, using Unix command  
bzip2 --best 

• for DNA sequence, 2 bits per base 
• for simple English text, 5 bits per character (permits use of 25 = 32 characters, 

e.g. 26 letters of the alphabet plus space and simple punctuation) 
• for English/Latin text using reduced or extended alphabets, the number of bits per 

character is calculated similarly (e.g. 3 bits per character for an alphabet of 8 = 23 
characters, 6 bits/char for a 64-character alphabet) 

 
 



 
 

Ref. Authors Year Message type Message 
length 

Bases 
used 

Shannon 
information 

(bits) 
Notes 

5 Clelland et al. 1999 English text 23 characters 69 138   
6 Kac 1999 English text 129 characters 360 645 Biblical quotation encoded in mutating 

E. coli genome as a work of art; decoded 
with 3 character errors, attributed to 
mutation 

30 Leier et al. 2000 three 9-bit numbers 27 bits 810 27   
31 Bancroft et al. 2001 English text 106 characters 318 504   
32 Wong et al. 2003 English text (64 character 

alphabet) 
185 
characters* 

560 800 *estimated 

33 Arita & Ohashi 2004 English text 4 characters 24 20   
34 Kashimawura et al. 2005 DNA string 20 bases 65 40   
35 Skinner et al. 2007 four 2-bit numbers 8 bits 231 8   
36 Yachie et al. 2007 mathematical equation and 

date (256 character alphabet) 
12 characters 250 96   

37 Heider & Barnekow 2008 English text 2 characters 5 10   
38 Portney et al. 2008 Latin text (using 8 character 

alphabet) 
5 characters 80 12 final character of 5 (i.e. 3 bits) lost in 

decoding 
7 Ailenberg & 

Rotstein 
2009 English text, simple musical 

notation, simple line-drawing 
notation 

349 characters 844 1715   

39 CUHK-iGEM 2010 English text 70 characters 438 350   
8 Gibson et al. 2010 bacterial genome with 

additional "watermark" 
sequences (see below) 

1077947 
bases 

1077947 2155894 decoded with 8 base errors and two 
insertions of 768 and 85 bases, respectively  

   of which:  "watermarks":  English text 
plus programming symbols (64 
character alphabet) 

1280 
characters 

4658 6504   

9 Church et al. 2012 English text, JPEG images, 
computer code, all within 
HTML encoding 

658776 
characters 
(bytes) 

6313270 2495760 decoded with 10 bit errors 

40 Jarvis & NPC 2012 English text 180 characters 540 900 Article 1 of the Universal Declaration of 
Human Rights encoded in E. coli genome 
as work of art 

 Goldman et al. this 
letter 

Total 757051 bytes 17940195 5165800   

   of which:  English text (all 154 
Shakespeare sonnets) 

107738 
characters 
(bytes) 

2533635 297856 file wssnt10.txt (from Project Gutenberg, 
http://www.gutenberg.org/ebooks/
1041)  

    PDF document (Watson and 
Crick, 1953) 

280864 bytes 6659172 2119848 file watsoncrick.pdf (from the Nature 
website, 
http://www.nature.com/nature/ 
dna50/archive.html, modified to 
achieve higher compression); see 
Supplementary Fig. S2a 

    MP3 audio file (extract from 
Martin Luther King "I Have a 
Dream" speech) 

168539 bytes 3997773 1227176 file MLK_excerpt_VBR_45-85.mp3 (from 
http://www.americanrhetoric.com/
speeches/mlkihaveadream.htm, 
modified to achieve higher compression: 
variable bit rate, typically 48–56 kbps; 
sampling frequency 44.1 kHz) 

    JPEG 2000 image file (image 
of EBI, 640 x 480 pixels, 
16.7M colours) 

184264 bytes 4379076 1474000 file EBI.jp2 (authors' own picture); see 
Supplementary Fig. S2b 

    ASCII file (Huffman code used 
to convert bytes to base-3; 
human readable) 

15646 bytes 370539 46920 file View_huff3.cd.new 

 
 

Supplementary Table S1  |  Amounts of human-designed information stored in DNA 
and successfully recovered.  Message length uses the natural measurement according to the 
Message type.  Bases used indicates the number of DNA bases designed to contain a single 
copy of the encoded message and ignores the number of copies synthesised.   
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Supplementary Figure S1  |  
Amounts of human-designed 
information stored in DNA 
and successfully recovered.  
Information content is 
measured in bits; note the 
logarithmic scale on the y-axis.  
Blue points indicate studies not 
adapted to high-throughput data 
storage; green indicates high-
throughput methods.  The grey 
point indicates that part of the 
Gibson et al. (2010) 
experiment8 that encoded 
information of non-biological 
origin. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Supplementary Figure S2  |  Digital 
information encoded in DNA.  a, An 
excerpt from the Watson and Crick (1953) 
paper18 (PDF format) and b, a digital 
photograph of the European Bioinformatics 
Institute (JPEG 2000 format) that were 
among the files encoded in DNA and 
successfully recovered in this study. 
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SUPPLEMENTARY METHODS  
 
Digital information encoding.  Five files of digital information stored on a hard disk drive 
were encoded using purpose-written computer software.  Each byte of each file to be encoded 
was represented as a sequence of DNA bases via base-3 digits (‘trits’ 0, 1 and 2) using a 
purpose-designed Huffman code10.  Each of the 256 possible bytes was represented by five or 
six trits; the Huffman code is given in Supplementary File huffman.pdf.  Next, each trit 
was encoded as a DNA nucleotide selected from the three nucleotides different from the last 
one used, to exclude homopolymer runs.  The resulting DNA sequence was converted to 
segments of length 100 bases, each overlapping the previous by 75 bases, to give strings of a 
length that was readily synthesised and to provide fourfold redundancy (each DNA base is 
included in four different segments).  Alternate segments were reverse complemented.  
Indexing information, comprising two trits for file identification (permitting up to 32 = 9 files 
to be distinguished, in this implementation), 12 trits for intra-file location information 
(permitting up to 312 = 531,441 locations per file, i.e. a total of up to 314 = 4,782,969 unique 
data locations) and one parity-check10 trit, again encoded as non-repeating DNA nucleotides, 
was appended to the 100 information storage bases.  Each indexed DNA segment had one 
further base added to each end, consistent with the ‘no homopolymers’ rule, that would 
indicate whether the entire fragment was reverse complemented during the ‘reading’ stage of 
the experiment.  A full formal specification of the digital information encoding scheme is 
given in Supplementary File file2features.pdf.  In total, the five files were 
represented by a total of 153,335 strings of DNA, each comprising 117 nt 
(= 1 + 100 + 2 + 12 + 1 + 1) to encode original digital information plus indexing information.  
The fourfold redundancy provides simple but effective error correction:  as each base is 
encoded in four of the DNA segments, two of which are reverse complemented, any 
systematic or chance errors in synthesis or sequencing may be corrected by majority vote or 
more complex decoding schemes.  We used simple majority voting (see below). 
 
 The data-encoding component of each string can contain Shannon information at 
5.07 DNA bases per byte (i.e. 8/5.07 = 1.58 bits per base), close to the theoretical optimum 
capacity of 5.05 bits per DNA base (see huffman.pdf) for base-4 channels with runlength 
limited to 1 (i.e. no repeated nucleotides).  After error-correction redundancy and addition of 
indexing and parity-check information, the data content of our encoding scheme was 4.94 
bytes per string (= 757,051/153,335), or 0.0422 bytes per base (= 4.94/117) (i.e. 23.70 bases 
per byte).  The 153,335 designed DNA strings are available online at 
http://www.ebi.ac.uk/goldman-srv/DNA-storage.  
 
 Our indexing scheme, with 14 nt per string available to record file identification and 
intra-file location, is easily extended by the addition of further indexing nucleotides.  This is 
considered below, in our analysis of the scaling properties of our DNA-storage scheme.  
Increasing the number of indexing trits (and therefore bases) used to specify file and intra-file 
location by just two, to 16, gives 316 = 43,046,721 unique locations, in excess of the 16.8M 
that is the practical maximum for the Nested Primer Molecular Memory (NPMM) 
scheme41,16.  While these indexing schemes share the aim of encoding which part of a larger 
total message any one string contains, ours is simpler and more-readily-extensible as it does 
not incorporate any system by which the indexing information is used to physically extract a 
subset of the information-bearing strings prior to decoding, as the NPMM scheme does. 
 



DNA synthesis.  The synthesis process was also used to incorporate 33 nt paired-end adapter 
sequences at the 5ʹ and 3ʹ ends of each oligonucleotide (oligo) to facilitate PCR amplification 
and sequencing on the Illumina platform: 
 

• 5ʹ adapter:  5ʹ-ACACTCTTTCCCTACACGACGCTCTTCCGATCT-3ʹ  
• 3ʹ adapter:  5ʹ-AGATCGGAAGAGCGGTTCAGCAGGAATGCCGAG-3ʹ  

 
 The 153,335 DNA oligo designs were synthesised in three distinct runs (with oligos 
randomly assigned to runs) using an updated version of Agilent Technologies’ OLS (oligo 
library synthesis) process described previously42,20.  This adapts the phosphoramidite 
chemistry developed previously43 and employs inkjet printing and flowcell reactor 
technologies in the SurePrint in situ microarray synthesis platform.  Inkjet printing within an 
anhydrous chamber allows the delivery of very small volumes of phosphoramidites to a 
confined coupling area on a 2D planar surface, resulting in the addition of hundreds of 
thousands of bases in parallel.  Subsequent oxidation and detritylation are carried out in a 
flowcell reactor.  Once DNA synthesis has been completed, the oligos are then cleaved from 
the surface and deprotected44.  
 
 Up to ~99.8% coupling efficiency is achieved by using thousands-fold excess of 
phosphoramidite and activator solution.  Similarly, millions-fold excess of detritylation agent 
drives the removal of the 5ʹ-hydroxyl protecting group to near-completion.  A novel 
controlled process in the flowcell reactor significantly reduces depurination, the most 
prevalent side reaction20.  With the latest platform, up to 244,000 unique sequences are 
synthesised in parallel and delivered as ~1–10 pmol pools of oligos.  This is equivalent to 
~2.5–25 × 106 oligos for each designed sequence (= 1–10 × 10-12 × 6.02 × 1023/244,000).  In 
our experiment, three runs were used to synthesise 153,335 designs, leading to the higher 
figure of ~12–120 × 106 (= 3–30 × 10-12 × 6.02 × 1023/153,335). 
 
 Error rates in the Agilent OLS process are approximately 1 per 500 bases 
synthesised42 and synthesis errors are believed to occur independently in different oligos (SC 
and EML, unpublished data).  Combined with our data encoding scheme, this gives further 
error tolerance.  The probability that a given oligo is synthesised entirely correctly is ~0.79 
(= (1 - 1/500)117), giving a large pool of correct oligos; oligos with a small number of errors 
in their 100 nt data region may also contribute to correct decoding, with the majority of 
positions contributing correct information and a small number of errors being outweighed by 
contributions from other reads (see below). 
 
Library preparation and sequencing.  The three samples of lyophilised oligos were 
resuspended in Tris buffer to a concentration of 5 ng/ml.  Samples were then purified from 
residual synthesis by-products on Ampure XP paramagnetic beads (Beckman Coulter).  The 
reconstituted oligo library was amplified in a total of 22 cycles using thermocycler conditions 
selected for even A/T vs. G/C processing45.  PCR was performed with high-fidelity 
AccuPrime reagents (Invitrogen), a combination of Taq and pyrococcus polymerases with a 
thermostable accessory protein, and paired-end PCR primers (Illumina) complementary to the 
synthesised adapter sequences flanking each DNA-storage oligo to incorporate additional 
sequences necessary for flowcell attachment.  PCR amplification enabled enrichment for full-
length oligos with both 5ʹ and 3ʹ adapters correctly synthesised, and allowed us to achieve 
appropriate concentration for sequencing while simultaneously incorporating the additional 
sequences necessary for flowcell attachment and cluster formation.  The amplified library 
products were bead-purified and quantified on the Agilent 2100 Bioanalyzer (concentration 



determined to be 15.1 ng/µl, i.e. 86 nM given a peak construct size measured at 270 bp and 
approximating 650 pg/pmol per bp), diluted to a concentration of 16 pM for flowcell loading 
and sequenced in paired-end mode on the Illumina HiSeq 2000.  The sequencing reaction 
consumed ~0.1% of the DNA in the initial library:  337 pg of DNA (120µl at 16 pM) from a 
starting value of 302 ng (20µl at 86 nM).  Further details of the sample preparation are given 
in Supplementary Table S2.  
 
 

 
 

Supplementary Table S2  |  Sample preparation details.  Products at stage A (blue) were 
measured; other values were computed from these. 
 
 
 Base calls were computed from observed intensities using the AYB software21, 
producing 79.6M read-pairs of 104 bases in length.  (Illumina’s base calling software Bustard 
produced 65.9M read-pairs, 17.2% fewer than AYB, but led to qualitatively identical 
decoding results.)  Quality control of the reads was performed using FastQC (version 0.10.1; 
ref. 46).  Overall the QC report (available as Supplementary File FastQC.pdf) indicated a 
high-quality sequencing run.  Per-cycle quality scores were as expected for an Illumina HiSeq 
run.  The mean quality (Q) score was 36.7, with 95% of quality scores ≥ Q30.  The GC 
content of the sequenced reads and the k-mer frequencies along the reads were consistent 
with the structure of the designed DNA strings.  The read duplication levels were high, in 
concordance with the design of the library providing many reads covering any single string. 
 
 As further quality assessment, but not used for subsequent digital information 
decoding, the reads were aligned to the designed DNA strings using BWA version 0.6.1-r104 
in paired-end mode47.  Per-cycle error rates were calculated from the resulting alignment 
using the ErrorRatePerCycle functionality of the GATK package (version 2.1-8-g5efb575; 
ref. 48).  Per-cycle error rates were as expected for an Illumina HiSeq run (see 
Supplementary File GATK.txt) and the mean error rate of 0.001774 after 12.81% 
unmappable reads were discarded is in line with the combination of current estimates of 
synthesis error (1 base in 500, above) and sequencing error (1 base in 1,000; ref. 49). 
 
Digital information decoding.  As the central 91 bases of each oligo were sequenced from 
both ends, rapid computation of full-length (117 base) oligos and removal of reads 
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inconsistent with our designs was straightforward.  Sequencing reads were decoded using 
purpose-written software that exactly reverses the encoding process.  The numbers of reads 
used in different stages of the information decoding process are given in Supplementary 
Table S3.  At the final stage of decoding, the five files were reconstructed from 50.1M 
strings, giving a mean sequencing depth of 1,308× coverage (standard deviation 459).  
Supplementary Fig. S3 shows the distribution of sequencing depths over encoded data 
locations (bases of the files’ DNA representations).  Virtually every location within each 
decoded file was detected in hundreds or thousands of different sequenced DNA oligos.   
 
 

Analysis 
stage 

Number of 
reads 

% of 
total 

% of 
previous 

stage 
Notes Possible reasons for losses relative to 

previous analysis stage 

A 79564267 100   read-pairs from AYB base caller   

B 55047046 69.19 69.19 117 nt fragment reads recovered from 
combining 104 nt paired-end reads with 91 
nt overlap as expected, with at most 6 
mismatches within the overlap region 

synthesis error, sequencing error, contamination 

C 50145113 63.02 91.10 reads with indexing information indicating 
they belong to one of the five files encoded 
in this experiment 

synthesis error or sequencing error leading to 
dinucleotide repeat, invalid file identification in 
indexing information or parity-check failure  

of which: 18270252 22.96  33.19  file watsoncrick.pdf   

 8064484 10.14  14.65  file wssnt10.txt   

 11966357 15.04  21.74  file EBI.jp2   

 802908 1.01  1.46  file View_huff3.cd.new   

 11041112 13.88  20.06  file MLK_excerpt_VBR_45-85.mp3   

D 50141326 63.02 99.99 reads contributing 'votes' to final decoding  
of file 

synthesis error or sequencing error in indexing 
information leading to invalid location in file 

of which: 18269250 22.96  99.99 file watsoncrick.pdf   

 8063761 10.13  99.99 file wssnt10.txt   

 11965715 15.04  99.99 file EBI.jp2   

 802414 1.01  99.94 file View_huff3.cd.new   

 11040186 13.88  99.99 file MLK_excerpt_VBR_45-85.mp3   

 

Supplementary Table S3  |  Numbers of reads used during decoding.  
 
 

Supplementary Figure S3  |  
Distribution of sequencing 
depths over encoded locations.  
The mean is at a coverage of 
1,308; the standard deviation is 
459. 

 
 
 
 
 
 
 
 



 Majority voting was used to resolve any discrepancies caused by DNA synthesis or 
sequencing errors.  The error rate amongst the ‘votes’ used to reconstruct the five files was 
0.004004 (20.08M errors in 5,014M bases counted).  This is higher than the combined 
synthesis and sequencing error rate reported above because of cases where one or a small 
number of errors in indexing information led to a read being misplaced in its correct file, or 
placed in an incorrect file, generating on average 75 incorrect votes (100 misplaced votes, 
each with probability ~0.75 of being incorrect). 
 
 On completion of this procedure, four of the five original files were reconstructed 
perfectly.  The fifth file required manual intervention to correct two regions each of 25 bases 
that were not recovered from any sequenced read, as described below. 
 
Scaling properties of the DNA-storage scheme.  In the following sections we demonstrate 
that, even constrained to today’s technology, the scheme presented here scales nearly 
linearly, well beyond any realistically needed range, i.e. beyond 20 orders of magnitude 
larger than the estimated global amount of digital data of 3 ZB (3 × 1021 bytes). 
 
 The global data volume was estimated by adding the 1.8 ZB estimate of data 
produced in 2011 (ref. 22) to the estimated production in 2010, calculated assuming a 
doubling time of two years22, to give 3 ZB (= 2/8.18.1 + ). 
 
 As each 117 base string can be synthesised and sequenced independently, it is 
reasonable to assume that the costs associated with these processes is linear in the number of 
strings.  Therefore, to demonstrate the scaling behaviour of our scheme, we show that the 
number of strings required to reliably store the data increases nearly linearly with the amount 
of data.  First, we focus on the relationship between the number of strings required and the 
amount of data to be stored.  Second, we show that increase the amount of data to be stored 
does not lead to higher error rates.  This is achieved by both theoretical and empirical 
estimates of the error rate as a function of amount of data and sequencing coverage. 
 
Scaling of the total number of strings required.  Let I be the information to be stored, in 
bytes.  We now show that the number of 117 nt strings required to encode these data scales 
nearly linearly with respect to I.  Recall that in each 117 nt string, 114 bases can be used to 
store data and indexing information.  As the amount of data to be stored increases, we may 
need to use more than the current 14 bases for indexing.  Supplementary Fig. S4 shows how, 
in general, the strings may be partitioned into x data bases and y indexing bases.  Note that y 
depends on the total number of strings to be used, S.  Optimally, ⎡ ⎤)(log3 Sy =  and therefore 

⎡ ⎤)(log114 3 Sx −= . 
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Supplementary Figure S4  |  Schematic representation of information encoding in DNA.  
Multiple strings are used, each comprising 117 bases of which x may be used for storing 
information and y for indexing, with x + y = 114.  
 
 
 Intuitively, we can anticipate that the relationship between S and I is not linear:  as the 
amount of information increases, the number of strings required also increases; this in turn 
requires more indexing information (and thus greater y), which leaves fewer bases to store 
information in each string (thus smaller x). 
 
 Expressed in bases, the information to be stored is B = 5.07I, as we can encode 
5.07 bases/byte (see above).  Since the encoding strings are 75% overlapping, the relationship 
between B and S is: 
 
 B = Sx / 4  =  S(114 – ⎡ ⎤)(log3 S ) / 4 (1) 
 
This can be solved for S numerically.  Fig. 2a (Main Text) illustrates the relationship of 
information stored (I) and the efficiency of encoding, measured as the proportion of bases 
synthesised (data and indexing) that are used to hold data (eff = B / 117S).  Two features 
become apparent.  First, the proportion of the total DNA available for encoding data 
decreases slowly, and is reasonable across the entire relevant data size range.  Second, even 
constrained to 117 base-long strings, the current encoding scheme makes it possible to 
encode > 20 orders of magnitude more data than is currently practically relevant.  (The 
theoretical limit comes when every base is required for indexing, and none remains to store 
information.)  
 
 DNA-storage costs are affected by the efficiency achieved for different information 
volumes.  Current costs are about $12,400/MB (below), based on our efficiency of 
B / 117S = 0.88.  Costs scale as the inverse of efficiency, and Fig. 2a (Main Text) also shows 
the cost function 12,400(0.88 / eff). 
 
 We repeated the above calculations based on longer synthesised strings.  The Agilent 
OLS process can already produce 300-base oligos, with 244,000 designed strings costing 
approximately $30,000.  Assuming that this would provide 217 nt strings for DNA-storage, 
an increase of 100 nt, we get twice as many available bases for 30/25 times the price.  This 
would give a current cost of about $7,440/MB (= 12,400 ×  (30,000 / 25,000) / 2) based on an 
efficiency of 0.94 (the encoding efficiency that would be achieved repeating our experiment 
with 217 nt strings) and consequently a cost function of 7,440(0.94 / eff).  Supplementary 
Fig. S5 repeats the information of Fig. 2a (Main Text), and adds the corresponding results for 
these longer strings.  This shows that with achievable improvement in DNA synthesis 
technology the scalability of DNA-storage is substantially improved, with higher efficiency, 
lower cost and slower decline in efficiency and increase in cost for larger data volumes. 
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Supplementary Figure S5  |  Scaling properties of DNA-storage.  The graphs show how 
encoding efficiency and costs change as the amount of stored information increases, for 
longer strings with 217 nt available for data and indexing.  The x-axis (logarithmic scale) 
represents the total amount of information to be encoded.  Common data scales are indicated, 
including the 3 ZB global data estimate.  The black line (y-axis scale to left) indicates 
encoding efficiency, measured as the proportion of synthesised bases available for data 
encoding.  The blue curves (y-axis scale to right) indicate the corresponding effect on 
encoding costs, both at current synthesis cost levels (solid line) and in the case of a two-order 
of magnitude reduction (dashed line).  The pale grey and pale blue lines give the 
corresponding results for 117 nt strings, for ease of comparison with Fig. 2a (Main Text).  
a, Linear cost scale; b, logarithmic cost scale. 
 
 
Scaling of the decoded data error rate.  Assuming that all synthesised strings have the 
same probability of being sequenced, the mean error rate per base of encoded data depends 
on three variables: 

• ε: the mean error rate per base at the level of a sequencing read (due to synthesis 
 and sequencing error), set to 0.004 as determined for our experiment (above) 

• S: the total number of designed strings 
• cB: the base coverage (mean number of times each base of encoded information is 

 sequenced) 
Recall that the decoding scheme calls each base of encoded information based on a majority 
vote of all the read bases corresponding to its position.  Because each base of encoded 
information is represented in four strings (due to the 75% overlap in encoded data between 
neighbouring strings), the mean string coverage is cS = cB / 4.  Thus, in total, there are 
ScS = ScB / 4 reads.  The probability that any read covers base i of encoded information is 
4 / S.  Thus, the number xi of base reads for encoded base i follows a binomial distribution 
with number of trials ScB / 4 and probability of success 4 / S, which we write as 
B(ScB / 4,4 / S). 
 
 Next, consider that for encoded base i to be correctly called, the majority of the xi read 
bases (votes) need to be correct.  The distribution of correct bases xi,correct is B(xi,1 – ε).  The 
majority vote regarding encoded base i is wrong if xi,correct < xi / 2.  (This is the worst case 
scenario that all incorrect votes are for the same incorrect base.  Our results are not 
significantly altered when other, more-favourable, scenarios are considered.)  Because of this 



dependency, the expected encoded base error rate is not straightforward to compute 
analytically, but it is easily estimated by Monte Carlo simulation.  Supplementary Fig. S6 
shows an R function that performs this estimation.  
 
 

# R function to estimate the encoded base error rate: 
estimateBaseErrorRateMC = function(eps,S,cS,nsamples) { 
 x = rbinom(nsamples, cS*S ,4/S); 
 s = sapply(x,function(t) rbinom(1,t,1-eps)); 
 e = 1 - sum (s > x/2) / nsamples; 
 return(e); 
} 

 

Supplementary Figure S6  |  R function to estimate encoded base error rate. 
 
 
 Supplementary Table S4 provides estimates of the encoded base error rate, as a 
function of data size and sequencing effort (per encoded byte) relative to our experiment, 
based on 105 Monte Carlo samples (nsamples in Supplementary Fig. S6) per cell.  This 
shows that, keeping sequencing effort per encoded byte constant, the error rate increases only 
very slowly with the increase in amount of data. 
 
 
 

1000 1MB 1GB 1TB 1PB 1EB 1ZB 1.00E+24 1.00E+27 1.00E+30 1.00E+33 1.00E+36 1.00E+39 1.00E+42 1.00E+45 1.00E+48
1000% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

316% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
100% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3% 0 0 0 0 0 0 0 0 0 0 0 0 0 1.00E-05 0.00038 0.00479
1% 0 0 1.00E-05 4.00E-05 3.00E-05 7.00E-05 9.00E-05 0.00016 0.00054 0.00118 0.00317 0.00657 0.0145 0.03268 0.07506 0.17551

0.3% 0.01221 0.01764 0.02209 0.02725 0.03568 0.04084 0.05129 0.06733 0.08702 0.11427 0.14752 0.19205 0.24854 0.32076 0.42418 0.5758
0.1% 0.24756 0.2693 0.29461 0.31652 0.34522 0.34376 0.37356 0.40983 0.44767 0.50255 0.54485 0.59052 0.63929 0.69121 0.7514 0.81493

0.03% 0.63294 0.66131 0.67665 0.69713 0.71112 0.70758 0.72623 0.74469 0.76418 0.78336 0.80056 0.8224 0.84375 0.86439 0.88685 0.90861
0.01% 0.859 0.87701 0.88289 0.89178 0.90067 0.87071 0.8787 0.88407 0.89109 0.89681 0.90474 0.91015 0.91856 0.9251 0.93259 0.94003

0.003% 0.9575 0.95954 0.96263 0.96321 0.96711 0.92772 0.9297 0.9313 0.93422 0.9357 0.93776 0.94094 0.9441 0.94557 0.94769 0.94916
0.001% 0.97811 0.98709 0.98762 0.9881 0.98941 0.99047 0.94677 0.94583 0.9464 0.94967 0.94959 0.94987 0.95178 0.95045 0.95207 0.95358
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Supplementary Table S4  |  Error rate as a function of data size and sequencing effort.  
Percentage sequencing effort is measured relative to our experiment; the highlighted row 
corresponds to the same sequencing effort per encoded byte as realised in our experiment. 
 
 
 In contrast, the error rate depends strongly on the coverage.  Supplementary Table S4 
suggests that the effective coverage of our actual experiment (1,308×; see above) could be 
substantially lowered without impacting on the error rate.  To confirm this theoretical 
analysis using our empirical data, we subsampled the 79.6M read-pairs at varying fractions 
and attempted to reconstruct the five encoded files using our original protocol.  Fig. 2b (Main 
Text) presents results on the per-encoded-base error rate for recovery of the file 
watsoncrick.pdf, which always has at least 50 base errors due to encoded bases that 
were not recovered from any sequenced read (see below), for the recovery of the other four 
encoded files combined and for our theoretical predictions based on the analysis above.  The 
plot shows the error rate (y-axis, as a percentage) as a function of subsampling percentage 
(x-axis, logarithmic scale).  This indicates good agreement of our theoretical and empirical 



results.  The difference between the watsoncrick.pdf results and the other four files is 
explained by the unrecoverable 50 bases described above.  In this case, the minimum possible 
error rate is 0.0036% (10 bytes not recovered, out of 280,864).  The discrepancy between the 
theoretical and empirical curves for relatively high subsampling fractions is probably due to 
model violation.  For example, unlike in our model, the true sampling probability of strings is 
almost certainly not uniform due to unequal DNA synthesis and sequencing efficiencies.  
Note however that the discrepancy corresponds to a difference of only a few per cent in terms 
of reads used, and the model remains a good approximation.  The plots confirm that we could 
reduce sequencing coverage by a factor of 10 or even 100 without significantly impacting on 
our ability to recover the encoded information. 
 
Modelling cost-effectiveness of DNA-storage.  We modelled the costs of DNA-storage over 
time according to: 
 
 CD(t) = D0 + F t (2) 
 
where CD(t) is the cost to archive 1 MB of information for a period of t years.  D0 is the initial 
cost to write this information to DNA-storage — this will decrease over time as DNA 
synthesis technology improves — and F is the cost per year to maintain a DNA-storage 
facility (per MB of information stored).  Storage on magnetic tape was modelled according 
to: 
 

 CT(t) = T0 + F t + 
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where CT(t) is the cost to archive 1 MB.  T0 is the initial cost to write this information to tape 
and F is the cost per year to maintain a tape storage facility (e.g. data centre), assumed equal 
to the corresponding cost for a DNA-storage archive.  This assumption is likely to strongly 
favour tape over DNA due to the costs of power and of recurrent replacement of computing 
and tape hardware.  The parameter f is the frequency of ‘tape transfer events’, i.e. how often 
it is necessary to read and re-write the information using the current technology as the 
previous one becomes obsolete.  Industry standards suggest f is likely to be approximately 
1/5–1/10 yr-1, i.e. data must be read and re-written to new technology every 5–10 years50,51.  
The summation represents the costs (per MB) of the f t transfer events occurring in t years, 
each comprising fixed cost Rfix (e.g. finite labour cost of retrieval of existing tape archive, 
set-up of copying process, storage of new archive material) and diminishing costs 
proportional to T0 (for new storage media) and Rdim (other expenses, e.g. costs proportional to 
time spent reading and re-writing information), both of which are assumed to halve every 2.5 
years due to technological improvements52. 
 
 Tape costs are already very low, and so we set T0 = 0.  The break-even point when 
DNA-storage achieves the same cost as tape comes when CD(t) = CT(t); equating 
equations (2) and (3) allows us to write: 
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D0/Rfix is the relative cost of writing DNA-storage compared to the fixed costs of tape transfer 
events.  Equation (4) indicates the balance between values of D0, f, t, Rfix and Rdim that leads 
to break-even point of DNA-storage; smaller values of D0/Rfix or greater values of t 
correspond to conditions where DNA-storage is more cost-effective than tape; conversely, 
larger D0/Rfix or smaller t make tape favourable. 
 
 The current commercial cost of the Agilent OLS process is approximately $25,000 for 
244,000 designed oligos of length 200 bases (approximately $0.05/100 bases).  We encoded 
739 kB in 153,335 DNA strings of length 117 bases, leading to a value for D0 of 
approximately $12,400/MB (= 25,000/(0.739 × (244,000/153,335) × (200/117))).  For 
archives of a few megabytes, we estimate that the cost in personnel, labour and management 
of a corresponding tape technology transition might be of the order of $25–100, leading to a 
current estimate of D0/Rfix in the range 125–500.  Other current DNA synthesising methods, 
e.g. maskless photolithography, can be used to produce shorter oligos with potentially higher 
error rates53, but are less expensive per base synthesised.  It is possible that these could be 
used to reduce the cost per MB (D0). 
 
 For realistic values of f (above), the second term on the right-hand side of equation (4) 
rapidly becomes small.  Supplementary Fig. S7 shows the relationship of D0/Rfix and break-
even points (timescale on which DNA-storage and tape storage costs equate) when 
Rdim/Rfix = 0, 1 and 5 and f = 1/5.  It is clear that even for Rdim/Rfix = 5, which is unrealistically 
large, the effect of Rdim/Rfix is negligible for values of D0/Rfix that are likely to be achieved in 
the near future (see Main Text).  The same is true for f = 1/10 (not shown).  Consequently, we 
have assumed Rdim/Rfix = 1 for illustrative purposes.  Fig. 2c (Main Text) plots D0/Rfix against 
time t in this case, highlighting the break-even points for f = 1/5 and f = 1/10. 
 
 

Supplementary Figure S7  |  Effect of 
Rdim/Rfix on DNA-storage break-even 
timescale.  The x-axis is the break-even time 
beyond which DNA-storage is less expensive 
than magnetic tape, assuming the tape archive 
has to be read and re-written every 5 years 
(f = 1/5); the y-axis is the relative cost of 
DNA-storage synthesis and tape transfer fixed 
costs.  Lines plotted are for Rdim/Rfix = 0 (red), 
1 (blue) and 5 (green).  Note the logarithmic 
scales on both axes. 

 
 
 
 
 
Information decoding costs.  In our experiment, we decoded 739 kB of information using 
one lane of the Illumina HiSeq 2000, at a sequencing cost of approximately $1,600.  This 
gives a decoding cost of ~$2,200/MB (= 1,600/0.739).  As shown above, we could have 
sequenced 10 times as much encoded information in the same run and still recovered our 
data.  This suggests that ~$220/MB (= 2,200/10) is a reasonable approximation for the 
decoding costs for optimised use of existing technologies. 
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SUPPLEMENTARY DISCUSSION 
 
Repair of file with missing reads.  During decoding, one file (ultimately determined to be 
watsoncrick.pdf) reconstructed in silico at the level of DNA (prior to decoding, via 
base-3, to bytes) contained two regions, each of 25 bases in length, that were not recovered 
from any sequenced read.  Given the overlapping segment structure of our encoding, each 
such region indicates the failure of any oligo representing any of four consecutive segments 
to be synthesised or sequenced successfully, as any one of four consecutive overlapping 
segments would have contained the bases corresponding to this location.  Inspection of the 
two regions indicated that the non-detected bases fell within long repeats of the following 
20-base motif:  
 
 5ʹ-GAGCATCTGCAGATGCTCAT-3ʹ 
 
(colours used to highlight motif repeats; see below).  We noticed that repeats of this motif 
have a self-reverse complementary pattern (Supplementary Fig. S8) and we hypothesised that 
long, self-reverse complementary DNA fragments might not be readily sequenced using the 
Illumina process.  In terms of DNA synthesis, we know no reason to expect self-reverse 
complementary fragments to be problematic in the Agilent OLS system.  The PCR conditions 
used for library construction involved denaturing the template oligos at 98 °C, initially for a 
period of 3 min and for 80 s per cycle thereafter.  These conditions are more than sufficient to 
denature and amplify any self-annealing oligos.  A further denaturing step separates the 
double-stranded products prior to dilution and flowcell loading, and bridge amplification 
should also proceed nominally to form clusters of clonally amplified library constructs.  
 
 

  5ʹ-...GAGCATCTGCAGATGCTCATGAGCATCTGCAGATGCTCATGAGCATCTGCAGATGCTCAT...-3ʹ 
        |||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
3ʹ-...TACTCGTAGACGTCTACGAGTACTCGTAGACGTCTACGAGTACTCGTAGACGTCTACGAG...-5ʹ 

 

Supplementary Figure S8  |  Self-reverse complementary nature of the 20-base motif. 
 
 
 However, the subsequent sequencing conditions are intended to promote DNA 
hybridisation/annealing, and so in principle internal secondary structures might form and 
remain stable throughout the process.  We therefore reason that each of the two self-
complementary regions produced by our encoding scheme led to the formation of stem-loop 
structures within the target sequences, inhibiting the sequencing-by-synthesis reaction over 
these nonlinear stretches.  The associated clusters would be omitted from the imaging 
readout, thereby resulting in a gap in the sequencing data when the files were reconstructed.  
 
 Examination of our coding methods indicated that such long repeats of the 20-base 
motif would arise when the original computer file contained repeats of byte value 255 
(hexadecimal FF).  Consequently, we modified the in silico reconstructed DNA sequence to 
repair the repeating motif pattern and subjected this to subsequent decoding steps.  No further 
problems were encountered, and the final decoded file matched perfectly the file 
watsoncrick.pdf.   
 
 With hindsight, we should have devised a code that ensured that no long self-
complementary regions existed in any of our designed DNA segments.  One way to achieve 
this would be to pre-process the files to be encoded using a one-time pad or other stream 



cipher with a standard or known key stream, leading to the DNA segments having random 
properties54.  
 
 
Timescale of dna-storage experiment.  Supplementary Fig. S9 shows the time taken for 
each stage of our DNA-storage experiment.  The experiment was not optimised for speed.  
All encoding and decoding computations were performed on one core of an Intel i5-2540M 
processor running at 2.60 GHz, except for the reconstruction of full-length (117 base) oligos 
from paired-end (104 base) reads which was performed using one core of an Intel Xeon 
X5650 at 2.67GHz.  In a large-scale DNA-storage archive, transfer periods could be 
eliminated by having encoding, storage and decoding taking place at one site.  Both computer 
software and laboratory procedures could readily be optimised and parallelised; laboratory 
procedures could also be automated with liquid-handling robotics for high-throughput 
applications55.  Both computational and laboratory equipment are subject to continual 
innovation, improving their speed. 
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Supplementary Figure S9  |  Timeline of DNA-storage experiment.  We report only 
periods of active work on the experiment.  We have omitted time taken to devise repairs for 
the file with two information gaps (above). 
 
 
Information storage density.  We recovered 757,051 bytes of information from 337 pg of 
DNA (above), giving an information storage density of ~2.2 PB/g (= 757,051/337 × 10-12).  
We note that this information density is enough to store the US National Archives and 
Records Administration’s Electronic Records Archives’ 2011 total of ~100 TB (ref. 56) in 
< 0.05 g of DNA, the Internet Archive Wayback Machines’s 2 PB archive of web sites57 in 
~1 g of DNA, and CERN’s 80 PB CASTOR system for LHC data25 in ~35 g of DNA. 
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